
Math 146C Homework #2
Solutions To Graded Problems

10.7: 6,9,13,14,21
10.5: 3,6,8,9,13,14,20,22
10.6: 4,5,10,12,21
10.8: 1,3

Section 10.7

Problem 6 - Consider an elastic string of length L whose ends are held
�xed. The string is set in motion from its equilibrium position with an initial
velocity ut (x; 0) = g (x). In parts (b) and (c) let L = 10 and a = 1.

(a) Find the displacement u (x; t) given that g (x) =

8<:
4x
L
1

4(x�L)
L

0 � x � L
4

L
4 � x � 3L

4
3L
4 � x � L

.

(b) Plot u (x; t) versus x for 0 � x � 10 and for several values of t between
t = 0 and t = 20.
(c) Plot u (x; t) versus t for 0 � t � 20 and for several values of x.

Solution -
(a) The motion of the string is governed by the following equations:

1. a2uxx = utt

2. u (0; t) = u (L; t) = 0; t � 0

3. u (x; 0) = 0; ut (x; 0) = g (x) ; 0 � x � L; where g (x) is the initial
velocity of the string at the point x.

and thus the solution is given by u (x; t) =
1X
n=1

knun (x; t) =
1X
n=1

kn sin
n�x
L sin n�atL .

Then kn = 2
n�a

0B@
L
4Z
0

4x
L sin

n�x
L dx+

3L
4Z

L
4

sin n�xL dx+

LZ
3L
4

4(x�L)
L sin n�xL dx

1CA Integration By Parts
=

8L
n3�3a

�
sin n�4 + sin

3n�
4

�
.

So then u (x; t) is given by:

u (x; t) =
1X
n=1

8L
n3�3a

�
sin n�4 + sin

3n�
4

�
sin n�xL sin n�atL = 8L

�3a

1X
n=1

(sin n�
4 +sin

3n�
4 )

n3 sin n�xL sin n�atL

Note:In parts (b) and (c) u (x; t) = 80
�3

1X
n=1

(sin n�
4 +sin

3n�
4 )

n3 sin n�x10 sin
n�t
10

(b) u (x; 0) ; u (x; 10) ; u (x; 20) in light red, u (x; 2:5) ; u (x; 7:5) in green, u (x; 5)
in purple, u (x; 12:5) ; u (x; 17:5) in brown, u (x; 15) in cyan.
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(c) u (0; t) ; u (10; t) ; u (20; t) in light red, u (2:5; t) ; u (7:5; t) in purple, u (5; t)
in green, u (12:5; t) ; u (17:5; t) in yellow, u (15; t) in light blue.
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Problem 13 - Show that the wave equation

a2uxx = utt
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can be reduced to the form u�� = 0 by the change of variables � = x � at,
� = x+ at. Show that u (x; t) can be written as

u (x; t) = � (x� at) +  (x+ at),

where � and  are arbitrary functions.

Solution - Recall the chain rule for partial derivatives:@z@s =
@z
@x

@x
@s +

@z
@y

@y
@s

First notice that �x = �x = 1, and �t = �a = ��t
Using the chain rule to di¤erentiate with respect to the x variable we get:

ux = u��x + u��x = u� + u�

Taking a second derivative we get:

uxx = u�� + 2u�� + u��.

Now take the �rst and second derivatives with respect to t:

ut = u��t + u��t = �au� + a�t
utt = a2 (u�� � 2u�� + u��).

So plugging uxx and utt into the wave equation yields:

a2 (u�� + 2u�� + u��) = a2 (u�� � 2u�� + u��)
() a2u�� + 2a

2u�� + a
2u�� = a2u�� � 2a2u�� + a2u��

() 4a2u�� = 0
() u�� = 0.

Now integrate both sides of u�� = 0 with respect to � to get:

u� (�; �) = � (�), � is an arbitrary function of �.

Then integrating both sides of u� (�; �) = � (�) with respect to � we get:

u (�; �) =
R
� (�) d� +  (�) = � (�) +  (�).

Thus:

u (x; t) = u (�; �) = � (x� at) +  (c+ at).

�

Problem 21 - The motion of a circular elastic membrane, such as a drum-
head, is governed by the two dimensional wave equation in polar coordinates

urr +
1
rur +

1
r2u�� = a�2utt
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Assuming that u (r; �; t) = R (r)� (�)T (t), �nd ordinary di¤erential equa-
tions satis�ed by R (r), �(�), and T (t).

Solution - First we need all of the partial derivatives:

ur = R0 (r)� (�)T (t)
urr = R00 (r)� (�)T (t)
u�� = R (r)�00 (�)T (t)
utt = R (r)� (�)T 00 (t).

Now we plug these into the equation to get:

R00 (r)� (�)T (t) + 1
rR

0 (r)� (�)T (t) + 1
r2R (r)�

00 (�)T (t) =
a�2R (r)� (�)T 00 (t)

Divide through by T (t):

=) R00 (r)� (�) + 1
rR

0 (r)� (�) + 1
r2R (r)�

00 (�) = a�2R (r)� (�) T
00(t)
T (t)

Now divide by R (r)� (�) on both sides:

=) R00(r)
R(r) +

1
r
R0(r)
R(r) +

1
r2
�00(�)
�(�) = a�2 T

00(t)
T (t)

In order for this equation to be valid for 0 < r < r0; 0 � � < 2�; t > 0; it is
necessary that both sides equal the same constant, call it �� .

R00(r)
R(r) +

1
r
R0(r)
R(r) +

1
r2
�00(�)
�(�) = a�2 T

00(t)
T (t) = ��

Which yields the system:(
R00(r)
R(r) +

1
r
R0(r)
R(r) +

1
r2
�00(�)
�(�) = ��

a�2 T
00(t)
T (t) = ��

=)
(

r2R
00(r)
R(r) + r

R0(r)
R(r) +

�00(�)
�(�) = ��r

2

T 00 (t) = �a2�T (t)

Concentrating on the �rst equation: r2R
00(r)
R(r) + r

R0(r)
R(r) +

�00(�)
�(�) = ��r

2

r2R
00(r)
R(r) + r

R0(r)
R(r) + �r

2 = ��00(�)
�(�)

Demanding that both sides equal the same constant we get:

r2R
00(r)
R(r) + r

R0(r)
R(r) + �r

2 = ��00(�)
�(�) = �

So now we can separate these as well to get the system:
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(
r2R

00(r)
R(r) + r

R0(r)
R(r) + �r

2 = �

��00(�)
�(�) = �

=)
�
r2R00 (r) + rR0 (r) + �r2R (r) = �R (r)

�00 (�) = ���(�)

=)
�
r2R00 (r) + rR0 (r) +

�
�r2 � �

�
R (r) = 0

�00 (�) + ��(�) = 0

Since the circular membrane is continuous, we must have �(2�) = � (0),
which requires that � = �2, where � 2 N0. �(2�) = � (0) is also known as the
periodicity condition. Since we want that solutions vary periodically in time,
we need that � > 0, so let � = �2:
So the system of three equations looks like:8<: r2R00 (r) + rR0 (r) +

�
�2r2 � �2

�
R (r) = 0

�00 (�) + �2�(�) = 0

T 00 (t) + a2�2T (t) = 0

Section 10.5

Problem 3 - Determine whether the following partial di¤erential equation
is separable. If so, �nd the pair of ordinary di¤erential equations it separates
into.

uxx + uxt + ut = 0

Solution - Assume u = XT .
Then: ux = X 0T , uxx = X 00T , ut = XT 0, uxt = X 0T 0.
Plugging in:

X 00T +X 0T 0 +XT 0 = 0
() X 00T + (X 0 +X)T 0 = 0
() X 00T = � (X 0 +X)T 0

() X00

(X0+X) =
�T 0
T

We demand that both sides of the equation be equal to the same constant:

X00

(X0+X) =
�T 0
T = �

=)
(

X00

(X0+X) = �
�T 0
T = �

()
�
X 00 � � (X 0 +X) = 0

T 0 + �T = 0
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Problem 9 - Consider the conduction of heat in a rod 40 cm in length whose
ends are maintained at 0�C for all t > 0. Find an expression for u (x; t) if the
initial temperature distribution in the rod is u (x; 0) = 50, 0 < x < 40. Suppose
that �2 = 1.

Solution - For simplicity I like to write the equation in a "system" form:8<: uxx = ut
u (0; t) = u (40; t) = 0
u (x; 0) = 50 = f (x)

0 < x < 40; t > 0
t > 0

0 < x < 40
Assuming that u = XT; and following the method of separation of variables

we get the eigenfunctions:

Xn = sin
n�x

40

with eigenvalues

�n =
n2�2

1600

as well as the temporal equations

Tn = e�
n2�2t
1600

which I assume that you are perfectly able to calculate on your own by now.
Now the solution is given by:

u (x; t) =

1X
n=1

cnTnXn =

1X
n=1

cne
�n2�2t

1600 sin
n�x

40

where

cn =
2
L

LZ
0

f (x) sin n�xL dx = 2
40

40Z
0

50 sin n�x40 dx =
5
2

40Z
0

sin n�x40 dx = 100
1�cosn�

n� :

And thus the �nal solution is:

u (x; t) =
1X
n=1

100 1�cosn�n� e�
n2�2t
1600 sin n�x40 = 100

�

1X
n=1

1�cosn�
n e�

n2�2t
1600 sin n�x40

Problem 22 - The heat conduction equation in two space dimensions is

�2 (uxx + uyy) = ut.

Assuming that u (x; y; t) = X (x)Y (y)T (t), �nd ordinary di¤erential equa-
tions that are satis�ed by X (x), Y (y), and T (t).

Solution - Find the necessary partial derivatives:
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uxx = X 00Y T
uyy = XY 00T
ut = XY T 0

Now we plug this into the equation:

�2 (X 00Y T +XY 00T ) = XY T 0

=) �2X 00Y T + �2XY 00T = XY T 0

And now divide through by XY T :

X00

X + Y 00

Y = T 0

�2T

And mandate that both sides equal the same constant:

X00

X + Y 00

Y = T 0

�2T = �

So separation yields: (
X00

X + Y 00

Y = �
T 0

�2T = �

=)
(

X00

X + Y 00

Y = �
T 0

�2T = �

=)
�

X00

X = �� Y 00

Y
T 0 � ��2T = 0

And focusing on the top equation: X
00

X = �� Y 00

Y
This equation is already separated so impose that both sides equal the same

constant to get:

X00

X = �� Y 00

Y = �

Which yields the system: (
X00

X = �

�� Y 00

Y = �

()
�

X 00 = �X
�Y � Y 00 = �Y

()
�

X 00 � �X = 0
Y 00 � (�� �)Y = 0

In order for T 0���2T = 0 to have solutions that remain bounded as t!1
we need that � < 0. Thus we can let � = ��2 and get T 0 + �2�2T = 0.
For X 00 � �X = 0 and the homogeneous boundary conditions, it is necessary
that � < 0, so let � = ��2, then X 00 + �2X = 0. And we also have that
Y 00 +

�
�2 � �2

�
Y = 0 by choice.

So the whole system is:
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8<:
X 00 + �2X = 0

Y 00 +
�
�2 � �2

�
Y = 0

T 0 + �2�2T = 0

Section 10.6

Problem 5 - Find the steady-state solution of the heat conduction equation
�2uxx = ut that satis�es the boundary conditions: u (0; t) = 0, ux (L; t) = 0.

Solution -The steady-state solution is the solution v that satis�es

v00 (x) = 0
v (0) = v0 (L) = 0.

So since v (x) = ax+ b and v0 (x) = a, we have that :
v (0) = b = 0 =) b = 0
and
v0 (0) = a = 0 =) a = 0

) The steady-state part of the solution is given by v (x) = 0

Problem 21 - Consider the heat conduction problem in a bar that is in
thermal contact with an external heat source or sink. Then the modi�ed heat
conduction equation is

ut = �2uxx + s (x) (1)

where the term s (x) describes the e¤ect of external agency; s (x) is positive
for a source and negative for a sink. Suppose that the boundary conditions are

u (0; t) = T1; u (L; t) = T2 (2)

and the initial condition is

u (x; 0) = f (x). (3)

Write u (x; t) = v (x) + w (x; t), where v and w are the steady state and
transient parts of the solution, respectively. State the boundary value problems
that v (x) and w (x; t), respectively, satisfy. Observe that the problem for w
is the fundamental heat conduction problem discussed in Section 10.5, with a
modi�ed initial temperature distribution.

Solution - I would like to note that this problem is good (and in
my view important) to do because it makes doing many of the inhomogeneous
heat equation problems easier to solve, and besides it is a nice conceptual
problem!

First we tackle the steady-state part of the solution.
So for this part we let u (x; t) = v (x).
Then equation (1) in this problem becomes:
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0 = �2v00 (x) + s (x)

And equations (2) become:

u (0; t) = v (0) = T1; u (L; t) = v (L) = T2

Now the transient part we use u (x; t) = v (x) + w (x; t).
So now equation (1) becomes:

wt = �2 (v00 + wxx) + s (x) (1)
0

Equations (2) become:

u (0; t) = v (0) + w (0; t) = T1 + w (0; t) = T1
u (L; t) = v (L) + w (L; t) = T2 + w (L; t) = T2

Lastly equation (3) becomes:

u (x; 0) = v (x) + w (x; 0) = f (x)
() w (x; 0) = f (x)� v (x)

Rearranging and simpifying equation (1)0:

wt = �2 (v00 + wxx) + s (x) =
�
�2v00 + s (x)

�
+ �2wxx = 0 + �

2wxx = �2wxx
() wt = �2wxx

So the steady-state system (for v) is given by:�
�2v00 (x) + s (x) = 0

v (0) = T1; v (L) = T2

And the transient system (for w) is given by:

8<: wt = �2wxx
w (0; t) = w (L; t) = 0
w (x; 0) = f (x)� v (x)

Section 10.8

Problem 1 -
(a) Find the solution u (x; y) of Laplace�s equation in the rectangle 0 < x <

a; 0 < y < b, that satis�es the boundary conditions
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u (0; y) = 0; u (a; y) = 0; 0 < y < b;
u (x; 0) = 0; u (x; b) = g (x) ; 0 � x � a.

(b) Find the solution if

g (x) =

�
x

a� x
0 � x � a

2
a
2 � x � a

.

(c) For a = 3 and b = 1 plot u versus x for several values of y and also plot
u versus y for several values of x.
(d) Plot u versus both x and y in three dimensions.

Solution -
(a) Using the method of separation of variables by letting u (x; y) = XY and

plugging it into the Laplace equation:

uxx + uyy = 0

we end up with two ODEs:�
X 00 � �X = 0
Y 00 + �Y = 0

The boundary conditions u (0; y) = 0; u (a; y) = 0 =) X (0) = 0; X (a) = 0
respectively.
The boundary condition u (x; 0) = 0 =) Y (0) = 0.

Solving �
X 00 � �X = 0

X (0) = 0; X (a) = 0
(F)

gives us that we only have nontrivial solutions if � = �
�
n�
a

�2
; n 2 N. So the

solutions to (F) are proportional to sin
�
n�x
a

�
.

Now solving �
Y 00 + �Y = 0
Y (0) = 0

(z)

tells us that the solutions to (z) must be proportional to sinh
�
n�y
a

�
.

So then the fundamental solutions un are given by:

un (x; y) = Xn (x)Yn (y) = sin
�n�x

a

�
sinh

�n�y
a

�
Assume that u (x; y) =

1X
n=1

cnun (x; y) =
1X
n=1

cn sin
�
n�x
a

�
sinh

�
n�y
a

�
, where

the cn come from the Fourier coe¢ cients of the boundary condition u (x; b) =
g (x). So then
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cn sinh

�
n�b

a

�
=
2

a

aZ
0

g (x) sin
�n�x

a

�
dx

Thus the solution is:8>>>><>>>>:
u (x; y) =

1X
n=1

cn sin
�
n�x
a

�
sinh

�
n�y
a

�
cn sinh

�
n�b
a

�
= 2

a

aZ
0

g (x) sin
�
n�x
a

�
dx

(b) Substitute the given g (x) into the equation for cn and we get:

cn sinh
�
n�b
a

�
= 2

a

aZ
0

g (x) sin
�
n�x
a

�
dx = 2

a

0B@
a
2Z
0

x sin
�
n�x
a

�
dx+

aZ
a
2

(a� x) sin
�
n�x
a

�
dx

1CA
IntegrationBy Parts

=
4a sin(n�2 )
n2�2

So we have that cn = 4a
�2

�
sin(n�2 )

n2 sinh(n�ba )

�
.

Thus:

u (x; y) =
1X
n=1

cn sin
�
n�x
a

�
sinh

�
n�y
a

�
=

1X
n=1

4a
�2

�
sin(n�2 )

n2 sinh(n�ba )

�
sin
�
n�x
a

�
sinh

�
n�y
a

�
(c) u (x; 0) in light red, u (x; :25) in green, u (x; :5) in yellow, u (x; :75) in

blue, u (x; 1) in magenta
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(d) Plot u versus both x and y in three dimensions.
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